NUMERICAL METHODS Question Bank
To Download this as a PDF Click HERE  
Note : Some equations may not be visible or alignment may differ on website.  
Unit I : Solution of equations and eigen value problems
Part  A
1.       If g(x) is continuous in [a,b] then under what condition the iterative method x = g(x) has  unique solution in [a,b].
2.       Find inverse of A = 
 by Gauss – Jordan method.
3.       Why Gauss Seidel iteration is a method of successive corrections.
4.        Compare Gauss Jacobi and Gauss Siedel methods for solving linear system of the form AX = B.
5.       State the conditions for convergence of Gauss Siedel method for solving a system of equations.
6.       Compare Gaussian elimination method and Gauss-Jordan method.
7.       What type of eigen value can be obtained using power method.
8.       Find the dominant eigen value of A = 
 by power method.
9.       How is the numerically smallest eigen value of A obtained.
10.   State two difference between direct and iterative methods for solving system of equations.
 Part B
- Find all the eigen      values of the matrix 
 by power method      (Apply only 3 iterations). 
- Use Newton’s backward difference formula to construct an interpolating polynomial of degree 3 for the data:
 
f( - 0.75) = - 0.0718125, f( - 0.5) = - 0.02475, f( - 0.25) = - 0.3349375 and f(0) = 1.101. Hence find f (-
). 
       6.  Solve the system of equations using Gauss Seidel iterative methods.
                             20x – y – 2z = 17, 3x + 20y – z = -18, 2x – 3y +20z = 25.
7.Find the largest eigen values and its corresponding vector of the matrix 
 by power method.8.  Using Gauss-  Jordan obtain the inverse of the matrix 

- Using Gauss Seidel method solve the system of equations starting with the values x = 1 , y = -2 and z = 3,
 
                     x + 3y + 5z = 173.61, x – 27y + 2z = 71.31, 41x – 2y + 3z = 65.46
- Solve the following equations by Jacobi’s iteration method
 
                      x + y +  z = 9, 2x – 3y + 4z = 13, 3x + 4y + 5z = 40.
Unit II : Interpolation and Approxiamtion
Part A
- Construct a linear interpolating polynomial given the points (x0,y0) and (x1,y1).
 - Obtain the interpolation quadratic polynomial for the given data by using Newton’s forward difference formula.
 
    X :   0        2             4           6
    Y :  -3        5             21        45
3.  Obtain the divided difference table for the following data.
   X : -1    0     2      3 
   Y : -8    3     1     12
     4.  Find the polynomial which takes the following values.
   X  :  0       1          2
   Y  :  1       2          1
     5.   Define forward, backward, central differences and divided differences. 
     6.   Evaluate 
(1-x) (1-2x) (1-3x)--------(1-10x), by taking h=1.
     7.   Show that the divided difference operator 
 is linear.
     8.   State the order of convergence of cubic spline.
     9.   What are the natural or free conditions in cubic spline.
    10. Find the cubic spline for the following data
X : 0          2              4            6
Y : 1          9              21          41
    11.  State the properties of divided differences.
    12.  Show that 
.
    13.  Find the divided differences of f(x) = x3 + x + 2 for the arguments 1,3,6,11.
    14.  State Newton’s forward and backward interpolating formula.
    15.  Using Lagranges find y at x = 2 for the following
                    X : 0           1              3              4                  5
                Y : 0           1             81            256             625
Part B
1.   Using Lagranges interpolation formula find y(10) given that y(5) = 12, y(6) = 13, 
         y(9) = 14 and y(11) = 16.
2.   Find the missing term in the following table
           x : 0     1     2      3     4
           y : 1     3     9      -     81
3. From the data given below find the number of students whose weight is between  
            60 to 70.
                Wt (x)   :   0-40            40-60        60-80        80-100            100-120
                 No of 
                students :    250               120           100             70                    50  
4. From the following table find y(1.5) and y’(1) using cubic spline.
                X  :   1          2          3
                Y  :  -8        -1        18
5.  Given sin 450 = 0.7071, sin 500 = 0.7660, sin 550  = 0.8192, sin 600 = 0.8660, find 
     sin 520 using Newton’s forward interpolating formula.
6. Given log 10 654 = 2.8156, log 10 658 = 2.8182, log 10 659 = 2.8189, log 10 661 =
     2.8202, find using Lagrange’s formula the value of log 10 656.
7. Fit a Lagrangian interpolating polynomial y = f(x) and find f(5)
            x : 1       3         4        6
            y : -3      0        30      132
8.  Find y(12) using Newton’ forward interpolation formula given
            x :    10          20          30          40            50      
                   y :   46          66          81           93           101
9.  Obtain the root of f(x) = 0 by Lagrange’s inverse interpolation given that f(30) = -30, 
     f(34) = -13, f(38) = 3, f(42) = 18. 
10. Fit a natural cubic spline for the following data 
          x : 0        1         2          3
          y : 1        4         0         -2
11. Derive Newton’s divided difference formula.
12. The following data are taken from the steam table:
                Temp0 c :    140       150          160           170           180
                Pressure :  3.685    4.854       6.502        8.076        10.225
        Find the pressure at temperature t = 1420  and at t = 1750
 13.   Find the sixth term of the sequence 8,12,19,29,42.
14.    From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at the age of 46.
            Age x :           45          50          55             60             65
            Premium y : 114.84    96.16   83.32         74.48       68.48
15. Form the divided difference  table for the following data
                               x  :   -2            0            3           5           7               8
                         y :  -792       108         -72        48        -144          -252
Unit III - Differentiation and Integration
Part A
1.       What the errors in Trapezoidal and Simpson’s rule.
2.       Write Simpson’s 3/8 rule assuming 3n intervals.
3.       Evaluate 
 using Gaussian quadrature with two points.
4.       In Numerical integration what should be the number of intervals to apply Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8.
5.       Evaluate  
 using Gaussian three point quadrature formula.
6.       State two point Gaussian quadratue formula to evaluate 
.
7.       Using Newton backward difference write the formula for first and second order derivatives at the end value x = x0 upto fourth order.
8.       Write down the expression for 
 and 
 at x = x0   using Newtons forward difference formula.
9.       State Simpson’s 1/3 and Simpson’s 3/8 formula.
10.   Using trapezoidal rule evaluate 
 by dividing into six equal parts.
 by dividing into six equal parts.Part B
1.  Using Newton’s backward difference formula construct an interpolating polynomial 
     of degree three and hence find f(-1/3) given f(-0.75) = - 0.07181250, f(-0.5) =
     - 0.024750, f(-0.25) = 0.33493750, f(0) = 1.10100.
2.       Evaluate 
 by Simpson’s 1/3 rule with 
= 0.5 where 0<x,y<1.
3.       Evaluate I = 
 by using Trapezoidal rule, rule taking h= 0.5 and h=0.25. Hence the value of the above integration by Romberg’s method.
4.       From the following data find y’(6)
X : 0        2          3           4          7           9
Y:  4       26        58         112      466       922
5.       Evaluate  
 numerically with h= 0.2 along x-direction and k = 0.25 along y direction.
6.       Find the value of sec (31) from the following data
          Tan 
       :  0.6008    0.6249    0.6494    0.6745
7.       Find the value of x for which f(x) is maxima in the range of x given the following table, find also maximum value of f(x).
         X:    9           10            11              12               13              14
         Y : 1330     1340        1320         1250            1120            930
8.       The following data gives the velocity of a particle for 20 seconds at an interval of five seconds. Find initial acceleration using the data given below
         Time(secs) :         0             5             10               15                20
          Velocity(m/sec): 0             3             14               69               228
9.       Evaluate 
 using Gaussian quadrature with 3 points.
 using Gaussian quadrature with 3 points.10.   For a given data  find  
 and 
 at x = 1.1
         X :  1.0            1.1           1.2              1.3             1.4           1.5               1.6
         Y:  7.989       8.403       8.781           9.129        9.451        9.750          10.031
UNIT – IV : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS
PART – A
- By      Taylor      series, find y(1.1) given 
 = x + y, y(1) =      0. - Find      the Taylor      series upto x3 term satisfying 
. - Using      Taylor      series method find y at x = 0.1 if 
. - State Adams – Bashforth predictor and corrector formula.
 - What is the condition to apply Adams – Bashforth method ?
 - Using      modified Euler’s method, find 
 if 
. - Write down the formula to solve 2nd order differential equation using Runge-Kutta method of 4th order.
 - In the derivation of fourth order Runge-Kutta formula, why is it called fourth order.
 - Compare R.K. method and Predictor methods for the solution of Initial value problems.
 - Using      Euler’s method find the solution of the IVP 
 at
 taking 
. 
PART-B
- The      differential equation 
 is satisfied by
.Compute the value of       y(0.8) by Milne’s predictor - corrector formula. - By      means of Taylor’s      series expension, find y at  x =      0.1,and x = 0.2 correct to three decimals places, given    
 , y(0) =  0. - Given      
 find the value of      y(0.1) by using R.K.method of fourth order. - Using      Taylor;s      series method find y at x = 0.1,       if  
, y(0)=1. - Given      
, y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548,      y(1.3)=1.979, evaluate y(1.4) by Adam’s- Bashforth method. - Using      Runge-Kutta method of 4th order, solve   
 with y(0)=1 at      x=0.2. - Using      Milne’s method to find y(1.4) given that 
given that 
. - Given      
 find 
by Milne’s predictor-corrector method taking h = 0.2. - Using      R.K.Method of order 4, find y for x = 0.1, 0.2, 0.3 given that 
 also find the      solution at x = 0.4 using Milne’s method. - Solve      
, y(0) = 1. 
Find y(0.1) and y(0.2) by R.K.Method of order 4.
Find y(0.3) by Euler’s method.
Find y(0.4) by Milne’s predictor-corrector method.
- Solve  
 subject to 
 using fourth      order Runge-Kutta Method. 
Find 
and  
. Using step size 
.
- Using      4th order RK Method compute y for x = 0.1 given 
 given y(0) = 1      taking h=0.1. - Determine      the value of y(0.4) using Milne’s method given 
, use Taylors      series to get the value of y at x = 0.1, Euler’s method for y at x = 0.2      and RK 4th order method for y at x=0.3. - Consider      the IVP 

 
(i)                  Using the modified Euler method, find y(0.2).
(ii)                Using R.K.Method of order 4, find y(0.4) and y(0.6).
(iii)               Using Adam- Bashforth predictor corrector method, find y(0.8).
- Consider      the second order IVP 
with y(0) = -0.4 and y’(0)=-0.6. 
(i)                  Using Taylor series approximation, find y(0.1).
(ii)                Using R.K.Method of order 4, find y(0.2).
UNIT-5
PART-A
- Define the local truncation error.
 - Write down the standard five point formula used in      solving laplace equation U
+ U
=  0 at the      point  (
). - Derive Crank-Niclson scheme.
 - State Bender Schmidt’s explicit formula for solving heat flow equations
 
      5.  Classify x
f
+ (1-y
) f
= 0
      6. What is the truncation error of the central difference approximation of 
         y
(x)?
      7. What is the error for solving Laplace and Poissson’s equation by finite difference method.
      8. Obtain the finite difference scheme fore the difference equations 2
 + y = 5.
      9. Write dowm the implicit formula to solve the one dimensional heat equation.
      10. Define the diagonal five point formula .
PART-B
- Solve      the equqtion  U
= U
 subject to      condition  u(x,0) = sin
; 0
,u(0,t) =  
      u(1,t) =0 using Crank- Nicholson method taking h = 1/3  k = 1/36(do on time step)
- Solve      U
+ U
=  0 for the      following square mesh with boundary values  
                                           1      2   
|     u  |        u  |        |   
|     u  |        u  |        |   
|     |        |        |   
                       1                                   4
                       2                                   5
                                     4      5
3. Solve U
=  U
 with boundary condition u(0,t) = u(4,t) and the initial condition  
    u
(x,0) = 0 , u(x,0)=x(4-x) taking h =1, k = ½  (solve one period)
     4.   Solve xy
+ y = 0 , y(1) =1,y(2) = 2, h = 0.25  by finite difference method.
     5.   Solve the boundary value problem   xy
-2y + x = 0, subject to y(2) = 0 =y(3).Find                                                     
           y(2.25),y(2.5),y(2.75).
     6 .  Solve the vibration problem 
  subject to the boundary conditions                                           
          y(0,t)=0,y(8,0)=0 and y(x,0)=
x(8-x).Find y at x=0,2,4,6.Choosing 
x = 2, 
t = 
 up 
          compute  to 4 time steps.
    7.   Solve 
u = -4(x + y) in the region given 0
 0
 With all boundaries kept 
                                                  0
     0
     0
     0
     0
    
|     |        |        |        |   
|     |        |        |        |   
|     |        |        |        |   
|     |        |        |        |   
0
0
 0
    
0
         8.  Solve u
+ u
= 0  over the square mesh of  sid
e 4 units, satisfying the following      
             conditions .
                      u(x,0) =3x       for  0
                     u(x, 4)  = x
     for  0
                     u(0,y) =  0,        for  0
                     u(4,y)  = 12+y   for 0
        9.   Solve  
 = 0, given that u(0,t)=0,u(4.t)=0.u(x,0)=x(4-x).Assume h=1.Find                                   
              the   values of u upto t =5.
10.       Solve y
= 4y
 subject to the condition  y(0,t) =0, y(2,t)=o, y(x,o) = x(2-x),


0 comments:
Post a Comment