We have move to Online Virtual Tutor (www.onlinevirtualtutor.com)

Ads

MA2264 - Numerical Methods - Question Bank


NUMERICAL METHODS Question Bank

To Download this as a PDF Click HERE 

Note : Some equations may not be visible or alignment may differ on website. 

Unit I : Solution of equations and eigen value problems
Part  A
1.       If g(x) is continuous in [a,b] then under what condition the iterative method x = g(x) has  unique solution in [a,b].
2.       Find inverse of A =  by Gauss – Jordan method.
3.       Why Gauss Seidel iteration is a method of successive corrections.
4.        Compare Gauss Jacobi and Gauss Siedel methods for solving linear system of the form AX = B.
5.       State the conditions for convergence of Gauss Siedel method for solving a system of equations.
6.       Compare Gaussian elimination method and Gauss-Jordan method.
7.       What type of eigen value can be obtained using power method.
8.       Find the dominant eigen value of A =  by power method.
9.       How is the numerically smallest eigen value of A obtained.
10.   State two difference between direct and iterative methods for solving system of equations.


 Part B

  1. Find all the eigen values of the matrix  by power method (Apply only 3 iterations).

  1. Use Newton’s backward difference formula to construct an interpolating polynomial of degree 3 for the data:
f( - 0.75) = - 0.0718125, f( - 0.5) = - 0.02475, f( - 0.25) = - 0.3349375 and f(0) = 1.101. Hence find f (-).
       6.  Solve the system of equations using Gauss Seidel iterative methods.
                             20x – y – 2z = 17, 3x + 20y – z = -18, 2x – 3y +20z = 25.

7.Find the largest eigen values and its corresponding vector of the matrix
      by power method.
8.  Using Gauss- Jordan obtain the inverse of the matrix

  1. Using Gauss Seidel method solve the system of equations starting with the values x = 1 , y = -2 and z = 3,
                     x + 3y + 5z = 173.61, x – 27y + 2z = 71.31, 41x – 2y + 3z = 65.46

  1. Solve the following equations by Jacobi’s iteration method
                      x + y +  z = 9, 2x – 3y + 4z = 13, 3x + 4y + 5z = 40.

Unit II : Interpolation and Approxiamtion

Part A

  1. Construct a linear interpolating polynomial given the points (x0,y0) and (x1,y1).
  2. Obtain the interpolation quadratic polynomial for the given data by using Newton’s forward difference formula.
    X :   0        2             4           6
    Y :  -3        5             21        45
3.  Obtain the divided difference table for the following data.
   X : -1    0     2      3
   Y : -8    3     1     12
     4.  Find the polynomial which takes the following values.
   X  :  0       1          2
   Y  :  1       2          1
     5.   Define forward, backward, central differences and divided differences.
     6.   Evaluate (1-x) (1-2x) (1-3x)--------(1-10x), by taking h=1.
     7.   Show that the divided difference operator  is linear.
     8.   State the order of convergence of cubic spline.
     9.   What are the natural or free conditions in cubic spline.
    10. Find the cubic spline for the following data
X : 0          2              4            6
Y : 1          9              21          41
    11.  State the properties of divided differences.
    12.  Show that .
    13.  Find the divided differences of f(x) = x3 + x + 2 for the arguments 1,3,6,11.
    14.  State Newton’s forward and backward interpolating formula.
    15.  Using Lagranges find y at x = 2 for the following
                    X : 0           1              3              4                  5
                Y : 0           1             81            256             625



Part B

1.   Using Lagranges interpolation formula find y(10) given that y(5) = 12, y(6) = 13,
         y(9) = 14 and y(11) = 16.

2.   Find the missing term in the following table
           x : 0     1     2      3     4
           y : 1     3     9      -     81
                                                               
3. From the data given below find the number of students whose weight is between 
            60 to 70.
                Wt (x)   :   0-40            40-60        60-80        80-100            100-120
                 No of
                students :    250               120           100             70                    50 

4. From the following table find y(1.5) and y’(1) using cubic spline.
                X  :   1          2          3
                Y  :  -8        -1        18

5.  Given sin 450 = 0.7071, sin 500 = 0.7660, sin 550  = 0.8192, sin 600 = 0.8660, find
     sin 520 using Newton’s forward interpolating formula.

6. Given log 10 654 = 2.8156, log 10 658 = 2.8182, log 10 659 = 2.8189, log 10 661 =
     2.8202, find using Lagrange’s formula the value of log 10 656.

7. Fit a Lagrangian interpolating polynomial y = f(x) and find f(5)
            x : 1       3         4        6
            y : -3      0        30      132


8.  Find y(12) using Newton’ forward interpolation formula given
            x :    10          20          30          40            50     
                   y :   46          66          81           93           101

9.  Obtain the root of f(x) = 0 by Lagrange’s inverse interpolation given that f(30) = -30,
     f(34) = -13, f(38) = 3, f(42) = 18.

10. Fit a natural cubic spline for the following data
          x : 0        1         2          3
          y : 1        4         0         -2

11. Derive Newton’s divided difference formula.

12. The following data are taken from the steam table:
                Temp0 c :    140       150          160           170           180
                Pressure :  3.685    4.854       6.502        8.076        10.225
        Find the pressure at temperature t = 1420  and at t = 1750

 13.   Find the sixth term of the sequence 8,12,19,29,42.

14.    From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at the age of 46.
            Age x :           45          50          55             60             65
            Premium y : 114.84    96.16   83.32         74.48       68.48

15. Form the divided difference  table for the following data
                               x  :   -2            0            3           5           7               8
                         y :  -792       108         -72        48        -144          -252


Unit III - Differentiation and Integration

Part A

1.       What the errors in Trapezoidal and Simpson’s rule.
2.       Write Simpson’s 3/8 rule assuming 3n intervals.
3.       Evaluate  using Gaussian quadrature with two points.
4.       In Numerical integration what should be the number of intervals to apply Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8.
5.       Evaluate   using Gaussian three point quadrature formula.
6.       State two point Gaussian quadratue formula to evaluate .
7.       Using Newton backward difference write the formula for first and second order derivatives at the end value x = x0 upto fourth order.
8.       Write down the expression for  and  at x = x0   using Newtons forward difference formula.
9.       State Simpson’s 1/3 and Simpson’s 3/8 formula.
10.   Using trapezoidal rule evaluate  by dividing into six equal parts.


Part B

1.  Using Newton’s backward difference formula construct an interpolating polynomial
     of degree three and hence find f(-1/3) given f(-0.75) = - 0.07181250, f(-0.5) =
     - 0.024750, f(-0.25) = 0.33493750, f(0) = 1.10100.

2.       Evaluate  by Simpson’s 1/3 rule with = 0.5 where 0<x,y<1.
3.       Evaluate I =  by using Trapezoidal rule, rule taking h= 0.5 and h=0.25. Hence the value of the above integration by Romberg’s method.
4.       From the following data find y’(6)
X : 0        2          3           4          7           9
Y:  4       26        58         112      466       922


5.       Evaluate   numerically with h= 0.2 along x-direction and k = 0.25 along y direction.
6.       Find the value of sec (31) from the following data
          :  31             32             33           34
          Tan        :  0.6008    0.6249    0.6494    0.6745
7.       Find the value of x for which f(x) is maxima in the range of x given the following table, find also maximum value of f(x).
         X:    9           10            11              12               13              14
         Y : 1330     1340        1320         1250            1120            930
8.       The following data gives the velocity of a particle for 20 seconds at an interval of five seconds. Find initial acceleration using the data given below
         Time(secs) :         0             5             10               15                20
          Velocity(m/sec): 0             3             14               69               228
9.       Evaluate  using Gaussian quadrature with 3 points.
10.   For a given data  find   and  at x = 1.1
         X :  1.0            1.1           1.2              1.3             1.4           1.5               1.6
         Y:  7.989       8.403       8.781           9.129        9.451        9.750          10.031


UNIT – IV : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

PART – A

  1. By Taylor series, find y(1.1) given  = x + y, y(1) = 0.
  2. Find the Taylor series upto x3 term satisfying .
  3. Using Taylor series method find y at x = 0.1 if .
  4. State Adams – Bashforth predictor and corrector formula.
  5. What is the condition to apply Adams – Bashforth method ?
  6. Using modified Euler’s method, find  if .
  7. Write down the formula to solve 2nd order differential equation using Runge-Kutta method of 4th order.
  8. In the derivation of fourth order Runge-Kutta formula, why is it called fourth order.
  9. Compare R.K. method and Predictor methods for the solution of Initial value problems.
  10. Using Euler’s method find the solution of the IVP  at taking .

PART-B
  1. The differential equation  is satisfied by.Compute the value of  y(0.8) by Milne’s predictor - corrector formula.
  2. By means of Taylor’s series expension, find y at  x = 0.1,and x = 0.2 correct to three decimals places, given     , y(0) =  0.
  3. Given  find the value of y(0.1) by using R.K.method of fourth order.
  4. Using Taylor;s series method find y at x = 0.1,  if  , y(0)=1.
  5. Given , y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3)=1.979, evaluate y(1.4) by Adam’s- Bashforth method.
  6. Using Runge-Kutta method of 4th order, solve    with y(0)=1 at x=0.2.
  7. Using Milne’s method to find y(1.4) given that given that .
  8. Given  find by Milne’s predictor-corrector method taking h = 0.2.
  9. Using R.K.Method of order 4, find y for x = 0.1, 0.2, 0.3 given that  also find the solution at x = 0.4 using Milne’s method.
  10. Solve , y(0) = 1.
Find y(0.1) and y(0.2) by R.K.Method of order 4.
Find y(0.3) by Euler’s method.
Find y(0.4) by Milne’s predictor-corrector method.
  1. Solve   subject to  using fourth order Runge-Kutta Method.
Find and  . Using step size .
  1. Using 4th order RK Method compute y for x = 0.1 given  given y(0) = 1 taking h=0.1.
  2. Determine the value of y(0.4) using Milne’s method given , use Taylors series to get the value of y at x = 0.1, Euler’s method for y at x = 0.2 and RK 4th order method for y at x=0.3.
  3. Consider the IVP
(i)                  Using the modified Euler method, find y(0.2).
(ii)                Using R.K.Method of order 4, find y(0.4) and y(0.6).
(iii)               Using Adam- Bashforth predictor corrector method, find y(0.8).
  1. Consider the second order IVP with y(0) = -0.4 and y’(0)=-0.6.
(i)                  Using Taylor series approximation, find y(0.1).
(ii)                Using R.K.Method of order 4, find y(0.2).

UNIT-5

PART-A
  1. Define the local truncation error.
  2. Write down the standard five point formula used in solving laplace equation U+ U=  0 at the point  ().
  3. Derive Crank-Niclson scheme.
  4. State Bender Schmidt’s explicit formula for solving heat flow equations
      5.  Classify xf+ (1-y) f= 0
      6. What is the truncation error of the central difference approximation of
         y(x)?
      7. What is the error for solving Laplace and Poissson’s equation by finite difference method.
      8. Obtain the finite difference scheme fore the difference equations 2 + y = 5.
      9. Write dowm the implicit formula to solve the one dimensional heat equation.
      10. Define the diagonal five point formula .








PART-B
  1. Solve the equqtion  U= U subject to condition  u(x,0) = sin; 0,u(0,t) =
      u(1,t) =0 using Crank- Nicholson method taking h = 1/3  k = 1/36(do on time step)
  1. Solve U+ U=  0 for the following square mesh with boundary values
                                           1      2  
u
u

u
u




                      
                       1                                   4
                       2                                   5
                                  

                                     4      5
3. Solve U=  U with boundary condition u(0,t) = u(4,t) and the initial condition 
    u(x,0) = 0 , u(x,0)=x(4-x) taking h =1, k = ½  (solve one period)
     4.   Solve xy+ y = 0 , y(1) =1,y(2) = 2, h = 0.25  by finite difference method.
     5.   Solve the boundary value problem   xy-2y + x = 0, subject to y(2) = 0 =y(3).Find                                                    
           y(2.25),y(2.5),y(2.75).
     6 .  Solve the vibration problem   subject to the boundary conditions                                          
          y(0,t)=0,y(8,0)=0 and y(x,0)=x(8-x).Find y at x=0,2,4,6.Choosing x = 2, t =  up
          compute  to 4 time steps.
    7.   Solve u = -4(x + y) in the region given 0 0 With all boundaries kept
       at  0 and choosing   x = y = 1.Start with zero vector and do 4 Gauss- Seidal iteration.
                                                  0     0     0     0     0   
                                                   















0

0
 0   

                                                      0    0     0     0     0

         8.  Solve u+ u= 0  over the square mesh of  side 4 units, satisfying the following     
             conditions .
                      u(x,0) =3x       for  0
                     u(x, 4)  = x     for  0
                     u(0,y) =  0,        for  0
                     u(4,y)  = 12+y   for 0
        9.   Solve   = 0, given that u(0,t)=0,u(4.t)=0.u(x,0)=x(4-x).Assume h=1.Find                                  
              the   values of u upto t =5.
                          
10.       Solve y= 4y subject to the condition  y(0,t) =0, y(2,t)=o, y(x,o) = x(2-x),
               . Do 4steps and find the values upto 2 decimal accuracy.
         

                       

                                 


                            

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
*Note :- All the Content Provided on VIRTUAL-TUTOR are just the reference for Educational Purpose.