We have move to Online Virtual Tutor (www.onlinevirtualtutor.com)

Ads

EE2351 POWER SYSTEM ANALYSIS SYLLABUS

To Download 6th Sem ->EE2351 POWER SYSTEM ANALYSIS SYLLABUS CLICK HERE
AIM
To understand the necessity and to become familiar with the modelling of power system
and components. And to apply different methods to analyse power system for the
purpose of system planning and operation.
OBJECTIVES
 To model the power system under steady state operating condition. To apply efficient
numerical methods to solve the power flow problem.
 To model and analyse the power systems under abnormal (or) fault conditions.
 To model and analyse the transient behaviour of power system when it is subjected
to a fault.
UNIT I INTRODUCTION 9
Modern power system (or) electric energy system - Analysis for system planning and
operational studies – basic components of a power system. Generator models -
transformer model – transmission system model - load representation. Single line
diagram – per phase and per unit representation – change of base. Simple building
algorithms for the formation of Y-Bus matrix and Z-Bus matrix.
UNIT II POWER FLOW ANALYSIS 9
Importance of power flow analysis in planning and operation of power systems.
Statement of power flow problem - classification of buses into P-Q buses, P-V (voltagecontrolled)
buses and slack bus. Development of Power flow model in complex variables
form and polar variables form.
Iterative solution using Gauss-Seidel method including Q-limit check for voltagecontrolled
buses – algorithm and flow chart.
Iterative solution using Newton-Raphson (N-R) method (polar form) including Q-limit
check and bus switching for voltage-controlled buses - Jacobian matrix elements –
algorithm and flow chart.
Development of Fast Decoupled Power Flow (FDPF) model and iterative solution –
algorithm and flowchart; Comparison of the three methods.
UNIT III FAULT ANALYSIS – BALANCED FAULTS 9
Importance short circuit (or) for fault analysis - basic assumptions in fault analysis of
power systems. Symmetrical (or) balanced three phase faults – problem formulation –
fault analysis using Z-bus matrix – algorithm and flow chart. Computations of short circuit
capacity, post fault voltage and currents.
UNIT IV FAULT ANALYSIS – UNBALANCED FAULTS 9
Introduction to symmetrical components – sequence impedances – sequence networks
– representation of single line to ground, line to line and double line to ground fault
conditions. Unbalanced fault analysis - problem formulation – analysis using Z-bus
impedance matrix – (algorithm and flow chart.).
UNIT V STABILITY ANALYSIS 9
Importance of stability analysis in power system planning and operation - classification of
power system stability - angle and voltage stability – simple treatment of angle stability
into small-signal and large-signal (transient) stability Single Machine Infinite Bus (SMIB)
system: Development of swing equation - equal area criterion - determination of critical
clearing angle and time by using modified Euler method and Runge-Kutta second order
method. Algorithm and flow chart.
L = 45 T = 15 TOTAL = 60 PERIODS
TEXT BOOKS
1. Hadi Saadat, ‘Power System Analysis’, Tata McGraw Hill Publishing Company, New
Delhi, 2002.
2. Olle. I. Elgerd, ‘Electric Energy Systems Theory – An Introduction’, Tata McGraw Hill
Publishing Company Limited, New Delhi, Second Edition, 2003.
REFERENCES
1. P. Kundur, ‘Power System Stability and Control, Tata McGraw Hill, Publications,
1994.
1. John J. Grainger and W.D. Stevenson Jr., ‘Power System Analysis’, McGraw Hill
International Book Company, 1994.
3. I.J. Nagrath and D.P. Kothari, ‘Modern Power System Analysis’, Tata McGraw-Hill
Publishing Company, New Delhi, 1990.
4. .K.Nagasarkar and M.S. Sukhija Oxford University Press, 2007.

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
*Note :- All the Content Provided on VIRTUAL-TUTOR are just the reference for Educational Purpose.